Analytic and finite element solutions of the power-law Euler–Bernoulli beams
نویسندگان
چکیده
In this paper, we use Hermite cubic finite elements to approximate the solutions of a nonlinear Euler– Bernoulli beam equation. The equation is derived from Hollomon’s generalized Hooke’s law for work hardening materials with the assumptions of the Euler–Bernoulli beam theory. The Ritz–Galerkin finite element procedure is used to form a finite dimensional nonlinear program problem, and a nonlinear conjugate gradient scheme is implemented to find the minimizer of the Lagrangian. Convergence of the finite element approximations is analyzed and some error estimates are presented. A Matlab finite element code is developed to provide numerical solutions to the beam equation. Some analytic solutions are derived to validate the numerical solutions. To our knowledge, the numerical solutions as well as the analytic solutions are not available in the literature. Published by Elsevier B.V.
منابع مشابه
Theoretical Formulations for Finite Element Models of Functionally Graded Beams with Piezoelectric Layers
In this paper an overview of functionally graded materials and constitutive relations of electro elasticity for three-dimensional deformable solids is presented, and governing equations of the Bernoulli–Euler and Timoshenko beam theories which account for through-thickness power-law variation of a two-constituent material and piezoelectric layers are developed using the principle of virtua...
متن کاملAn Efficient Finite Element Formulation Based on Deformation Approach for Bending of Functionally Graded Beams
Finite element formulations based generally on classical beam theories such as Euler-Bernoulli or Timoshenko. Sometimes, these two formulations could be problematic expressed in terms of restrictions of Euler-Bernoulli beam theory, in case of thicker beams due to non-consideration of transverse shear; phenomenon that is known as shear locking characterized the Timoshenko beam theory, in case of...
متن کاملFinite Element Analysis of Functionally Graded Piezoelectric Beams
In this paper, the static bending, free vibration, and dynamic response of functionally graded piezoelectric beams have been carried out by finite element methodunder different sets of mechanical, thermal, and electrical loadings. The beam with functionally graded piezoelectric material (FGPM) is assumed to be graded across the thickness with a simple power law distributio...
متن کاملBuckling Behaviors of Symmetric and Antisymmetric Functionally Graded Beams
The present study investigates buckling characteristics of both nonlinear symmetric power and sigmoid functionally graded (FG) beams. The volume fractions of metal and ceramic are assumed to be distributed through a beam thickness by the sigmoid-law distribution (S-FGM), and the symmetric power function (SP-FGM). These functions have smooth variation of properties across the boundary rather tha...
متن کاملNon Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations
Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...
متن کامل